WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#2 Key

Problem 1. Let $p\left(x_{1}, \ldots, x_{N}\right)$ be the $N \times N$ Vandermonde determinant

$$
p\left(x_{1}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{N} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{N-1} & x_{2}^{N-1} & \cdots & x_{N}^{N-1}
\end{array}\right] .
$$

a.) Show that $p\left(x_{1}, \ldots, x_{N}\right)$ is a polynomial of degree $N-1$ in x_{N} with roots equal $x_{1}, x_{2}, \ldots, x_{N-1}$.
Solution. Expanding the determinant along the last column produces the expression $p\left(x_{1}, . ., x_{N}\right)=\alpha_{N-1}\left(x_{1}, \ldots, x_{N-1}\right)\left(x_{N}^{N-1}+\alpha_{N-2}\left(x_{1}, \ldots, x_{N-1}\right)\left(x_{N}^{N-2}+\ldots+\alpha_{0}\left(x_{1}, \ldots, x_{N-1}\right)\right.\right.$ which is indeed a polynomial in x_{N} of degree $N-1$. Furthermore, if $x_{N}=x_{j}$ for any $j=1,2, . ., N-1$, the determinant has two identical columns and must vanish. Hence,

$$
p\left(x_{1}, \ldots, x_{N}\right)=\beta\left(x_{1}, \ldots, x_{N-1}\right)\left(x_{N}-x_{1}\right)\left(x_{N}-x_{2}\right) \ldots\left(x_{N}-x_{N-1}\right) .
$$

Note that the same consideration can be made for all the other x_{j} for $j=1,2, \ldots, N-1$. The determinant p is a polynomial in x_{j} with zeros $x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, . ., x_{N}$. Thus

$$
p\left(x_{1}, \ldots, x_{N}\right)=c \prod_{j<k}\left(x_{j}-x_{k}\right)
$$

with c being a non-zero constant.
b.) Show that the $N \times N$ linear system

$$
\sum_{j=1}^{N} a_{j}(-j)^{k}=1, \quad k=0,1, \ldots, N-1
$$

has a unique solution.
Solution. Using part a.) the determinant of the coefficient matrix of this system is equal to $p(-1,-2, \ldots,-N) \neq 0$

Problem 2. Let $s \in(0,1)$. Show that an equivalent norm in $H^{s}\left(\mathbb{R}^{d}\right)$ is given by

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{d}}|u(x)|^{2} d x+\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{2 s+d}} d x d y
$$

Recall that the norm in the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ is defined using the Fourier transform

$$
\|u\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=\int_{\mathbb{R}^{d}}\langle\xi\rangle^{2 s}|\hat{u}(\xi)|^{2} d \xi
$$

where $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$.

Proof. Note that after a linear change of variables we have

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{d}}|u(x)|^{2} d x+\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x+z)-u(x)|^{2}}{|z|^{2 s+d}} d x d z .
$$

Using properties of the Fourier transform

$$
u(x+z)-u(x)=\mathcal{F}^{-1}\left[\left(e^{i \xi z}-1\right) \hat{u}(\xi)\right]
$$

and hence, using Parseval's identity

$$
\int_{\mathbb{R}^{d}}|u(x+z)-u(x)|^{2}=\int_{\mathbb{R}^{d}}\left|e^{i \xi z}-1\right|^{2}|\hat{u}(\xi)|^{2} d \xi
$$

So far

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{d}} \|\left.\hat{u}(\xi)\right|^{2} d \xi+\int_{\mathbb{R}}^{d}\left\{\int_{\mathbb{R}^{d}} \frac{\left|e^{i \xi z}-1\right|^{2}}{|z|^{2 s+d}} d z\right\}|\hat{u}(\xi)|^{2} d \xi .
$$

In the inner integral, we may assume without loss of generality that $\xi=(|\xi|, 0, \ldots, 0)$. (Otherwise perform an orthogonal change of coordinates.) The inner integral is then simplified by means of the substitution $y=|\xi| z$

$$
\int_{\mathbb{R}^{d}} \frac{\left|e^{i|\xi| z_{1}}-1\right|^{2}}{|z|^{2 s+d}} d z=|\xi|^{2 s} \int_{R^{d}} \frac{\left|e^{i y_{1}}-1\right|^{2}}{|y|^{2 s+d}} d y
$$

Since $\left|e^{i y_{1}}-1\right|^{2} \leq C\left|y_{1}\right|^{2}$ by means of the Taylor series for the exponential for $|y| \leq 1$ small we have

$$
\frac{\left|e^{i y_{1}}-1\right|^{2}}{|y|^{2 s+d}} \leq C \frac{\left|y_{1}\right|^{2}}{|y|^{2 s+d}} \leq C \frac{|y|^{2}}{|y|^{2 s+d}}=C \frac{1}{|y|^{2 s+d-2}}
$$

for $|y| \leq 1$ which shows that the expression is integrable over the unit ball since $s<1$ (use polar coordinates). So far we have

$$
\int_{|y| \leq 1} \frac{\left|e^{i y_{1}}-1\right|^{2}}{|y|^{2 s+d}} d y=C_{1}(s)
$$

and the integral

$$
\int_{|y| \geq 1} \frac{\left|e^{i y_{1}}-1\right|^{2}}{|y|^{2 s+d}} d y
$$

is convergent because of $s>0$ (use again polar coordinates). Hence, we have proved that

$$
\int_{\mathbb{R}^{d}} \frac{\left|e^{i y_{1}}-1\right|^{2}}{|y|^{2 s+d}} d y=C(s)
$$

and thus

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{d}}|\hat{u}(\xi)|^{2} d \xi+C(s) \int_{\mathbb{R}^{d}}|\xi|^{2 s}|\hat{u}(\xi)|^{2} d \xi
$$

This norm is equivalent to $\|u\|_{H^{s}\left(\mathbb{R}^{d}\right)}$ for $0<s<1$ because of the inequality

$$
c_{1}|\xi|^{2 s} \leq\left[\sqrt{1+|\xi|^{2}}\right]^{2 s} \leq c_{2}|\xi|^{2 s}
$$

Problem 3. Sobolev space on the torus \mathbb{T}^{d}. The torus \mathbb{T}^{d} is the Cartesian product of d copies of the unit circle S^{1}. A function defined on the torus is a 2π periodic function with respect to each independent variable. If f is integrable on \mathbb{T}^{d}, then the Fourier coefficients of f are given by

$$
\mathcal{F}[f](k)=\hat{f}(k)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{T}^{d}} f(\theta) e^{-i k \cdot \theta} d \theta, \quad k \in \mathbb{Z}^{d}
$$

The set of Fourier coefficients plays for the same role as the Fourier transform in \mathbb{R}^{d}. The expansion of a periodic function into a Fourier series is the analogue of the Fourier inversion formula, that is

$$
f(\theta)=\frac{1}{(2 \pi)^{d / 2}} \sum_{k \in \mathbb{Z}^{d}} \hat{f}(k) e^{i k \cdot \theta}, \quad \theta \in \mathbb{T}^{d}
$$

One can show that the map \mathcal{F} is a isomorphic between the function spaces $L_{2}\left(\mathbb{T}^{d}\right)$ and $l_{2}\left(\mathbb{Z}^{d}\right)$. Then, for $s \in \mathbb{R}, s \geq 0$ we define

$$
H^{s}\left(\mathbb{T}^{d}\right)=\left\{u \in L_{2}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{2 s}<\infty\right\}
$$

where $\langle k\rangle=\sqrt{1+|k|^{2}}$.
a.) Show that $H^{s}\left(\mathbb{T}^{d}\right)^{\prime} \approx H^{-s}\left(\mathbb{T}^{d}\right)$ where

$$
H^{-s}\left(\mathbb{T}^{d}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{-2 s}<\infty\right\}
$$

Proof. Let $s \geq 0$. Suppose that $u \in H^{s}\left(\mathbb{T}^{d}\right)$ and let f be a continuous linear functional on $H^{s}\left(\mathbb{T}^{d}\right)$. Since $H^{s}\left(\mathbb{T}^{d}\right)$ is a Hilbert space, via the Riesz representation theorem one finds a $v \in H^{s}\left(\mathbb{T}^{d}\right)$ such that

$$
(u, f)=\sum_{k \in \mathbb{Z}^{d}} \hat{u}(k) \overline{\hat{v}(k)}\langle k\rangle^{2 s} .
$$

This gives $\hat{f}(k)=\hat{v}(k)\langle k\rangle^{2 s}$ and since

$$
\sum_{k \in \mathbb{Z}^{d}}|\hat{f}(k)|^{2}\langle k\rangle^{-2 s}=\sum_{k \in \mathbb{Z}^{d}}|\hat{v}(k)|^{2}\langle k\rangle^{2 s}<\infty
$$

we have shown $f \in H^{-s}\left(\mathbb{T}^{d}\right)$. So far we have shown that $H^{s}\left(\mathbb{T}^{d}\right)^{\prime} \subset H^{-s}\left(\mathbb{T}^{d}\right)$. To prove the converse inclusion let $f \in H^{-s}\left(\mathbb{T}^{d}\right)$. Then for all $u \in H^{s}\left(\mathbb{T}^{d}\right)$ we have by the CauchySchwarz inequality
$|(u, f)|=\left|\sum_{k \in \mathbb{Z}^{d}} \hat{u}(k) \overline{\hat{f}(k)}\right| \leq\left(\sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{2 k}\right)^{1 / 2}\left(\sum_{k \in \mathbb{Z}^{d}}|\hat{f}(k)|^{2}\langle k\rangle^{-2 k}\right)^{1 / 2} \leq C\|u\|_{H^{s}\left(\mathbb{T}^{d}\right)}$,
which proves that f defines a bounded linear function on $H^{s}\left(\mathbb{T}^{d}\right)$.
b.) Define the operator Λ^{σ} on $\mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right)$ by

$$
\left(\Lambda^{\sigma} u\right)(\theta)=\sum_{k \in \mathbb{Z}^{d}} \hat{u}(k)\langle k\rangle^{\sigma} e^{i k \cdot \theta}, \quad \sigma \in \mathbb{R}
$$

Then $H^{s}\left(\mathbb{T}^{d}\right)=\Lambda^{-s} L_{2}\left(\mathbb{T}^{d}\right)$ for all $s \in \mathbb{R}$. Show that, for any $s \in \mathbb{R}$, the natural injection operator

$$
j: H^{s+\sigma}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)
$$

is compact for all $\sigma>0$. Hint: Note that the mapping $\Lambda^{\sigma}: H^{s+\sigma}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)$ is continuous and that $j=\Lambda^{-\sigma} \circ \Lambda^{\sigma}$. Hence, to prove this statement it will suffice to show that $\Lambda^{-\sigma}: H^{s}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)$ is a compact operator whenever $\sigma>0$.
Proof. Let $u \in H^{s}\left(\mathbb{R}^{d}\right)$. Then

$$
\sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{2 s}<\infty .
$$

Introduce the sequence of finite rank operators

$$
\Lambda_{n}^{-\sigma}=\sum_{|k| \leq n} \hat{u}(k)\langle k\rangle^{-\sigma} e^{i k \cdot \theta} .
$$

Here $|k|=\left|k_{1}\right|+\left|k_{2}\right|+\ldots+\left|k_{d}\right|$. We claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Lambda^{-\sigma}-\Lambda_{n}^{-\sigma}\right\|=0 \tag{1}
\end{equation*}
$$

where the norm is the operator norm of a linear mapping on $H^{s}\left(\mathbb{R}^{d}\right)$. Indeed, compute

$$
\begin{aligned}
\left\|\Lambda^{-\sigma}-\Lambda_{n}^{-\sigma}\right\| & =\sup _{\|u\|_{H^{s}\left(\mathbb{T}^{d}\right)}=1}\left\|\Lambda^{-\sigma} u-\Lambda_{n}^{-\sigma} u\right\|_{H^{s}\left(\mathbb{T}^{d}\right)}=\sup _{\|u\|_{H^{s}\left(\mathbb{T}^{d}\right)}=1}\left\|\sum_{|k|>n} \hat{u}(k)\langle k\rangle^{-\sigma} e^{i k \cdot \theta}\right\|_{H^{s}\left(\mathbb{T}^{d}\right)} \\
& =\sup _{\|u\|_{H^{s}\left(\mathbb{T}^{d}\right)}=1} \sum_{|k|>n}|\hat{u}(k)|^{2}\langle k\rangle^{2 s-2 \sigma}<\langle n\rangle^{-2 \sigma} \sup _{\|u\|_{H^{s}\left(\mathbb{T}^{d}\right)}=1} \sum_{|k|>n}|\hat{u}(k)|^{2}\langle k\rangle^{2 s} \\
& =\langle n\rangle^{-2 \sigma} \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Formula (1) shows that $\Lambda^{-\sigma}$ is the norm limit of finite rank operators. Hence, according to a Theorem from Functional Analysis, $\Lambda^{-\sigma}$ is a compact operator.

