
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #2 Key

Problem 1. Let p(x1, ..., xN) be the N ×N Vandermonde determinant

p(x1, ..., xN) = det


1 1 · · · 1
x1 x2 · · · xN
...

...
. . .

...
xN−11 xN−12 · · · xN−1N

 .

a.) Show that p(x1, ..., xN) is a polynomial of degree N − 1 in xN with roots equal
x1, x2, ..., xN−1.

Solution. Expanding the determinant along the last column produces the expression

p(x1, .., xN) = αN−1(x1, ..., xN−1)(x
N−1
N + αN−2(x1, ..., xN−1)(x

N−2
N + ...+ α0(x1, ..., xN−1)

which is indeed a polynomial in xN of degree N − 1. Furthermore, if xN = xj for any
j = 1, 2, .., N − 1, the determinant has two identical columns and must vanish. Hence,

p(x1, ..., xN) = β(x1, ..., xN−1)(xN − x1)(xN − x2)...(xN − xN−1) .
Note that the same consideration can be made for all the other xj for j = 1, 2, ..., N − 1.
The determinant p is a polynomial in xj with zeros x1, x2, ..., xj−1, xj+1, .., xN . Thus

p(x1, ..., xN) = c
∏
j<k

(xj − xk)

with c being a non-zero constant.

b.) Show that the N ×N linear system

N∑
j=1

aj(−j)k = 1, k = 0, 1, ..., N − 1

has a unique solution.

Solution. Using part a.) the determinant of the coefficient matrix of this system is equal
to p(−1,−2, ...,−N) 6= 0

Problem 2. Let s ∈ (0, 1). Show that an equivalent norm in Hs(Rd) is given by

‖u‖2s =

∫
Rd

|u(x)|2dx+

∫∫
Rd×Rd

|u(x)− u(y)|2

|x− y|2s+d
dxdy .

Recall that the norm in the Sobolev space Hs(Rd) is defined using the Fourier transform

‖u‖2Hs(Rd) =

∫
Rd

〈ξ〉2s|û(ξ)|2dξ

where 〈ξ〉 =
√

1 + |ξ|2.
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Proof. Note that after a linear change of variables we have

‖u‖2s =

∫
Rd

|u(x)|2dx+

∫∫
Rd×Rd

|u(x+ z)− u(x)|2

|z|2s+d
dxdz .

Using properties of the Fourier transform

u(x+ z)− u(x) = F−1[(eiξz − 1)û(ξ)]

and hence, using Parseval’s identity∫
Rd

|u(x+ z)− u(x)|2 =

∫
Rd

|eiξz − 1|2|û(ξ)|2 dξ .

So far

‖u‖2s =

∫
Rd

‖û(ξ)|2dξ +

∫ d

R

{∫
Rd

|eiξz − 1|2

|z|2s+d
dz

}
|û(ξ)|2 dξ .

In the inner integral, we may assume without loss of generality that ξ = (|ξ|, 0, ..., 0).
(Otherwise perform an orthogonal change of coordinates.) The inner integral is then
simplified by means of the substitution y = |ξ|z∫

Rd

|ei|ξ|z1 − 1|2

|z|2s+d
dz = |ξ|2s

∫
Rd

|eiy1 − 1|2

|y|2s+d
dy

Since |eiy1 − 1|2 ≤ C|y1|2 by means of the Taylor series for the exponential for |y| ≤ 1
small we have

|eiy1 − 1|2

|y|2s+d
≤ C

|y1|2

|y|2s+d
≤ C

|y|2

|y|2s+d
= C

1

|y|2s+d−2

for |y| ≤ 1 which shows that the expression is integrable over the unit ball since s < 1
(use polar coordinates). So far we have∫

|y|≤1

|eiy1 − 1|2

|y|2s+d
dy = C1(s)

and the integral ∫
|y|≥1

|eiy1 − 1|2

|y|2s+d
dy

is convergent because of s > 0 (use again polar coordinates). Hence, we have proved that∫
Rd

|eiy1 − 1|2

|y|2s+d
dy = C(s)

and thus

‖u‖2s =

∫
Rd

|û(ξ)|2 dξ + C(s)

∫
Rd

|ξ|2s|û(ξ)|2 dξ .

This norm is equivalent to ‖u‖Hs(Rd) for 0 < s < 1 because of the inequality

c1|ξ|2s ≤ [
√

1 + |ξ|2]2s ≤ c2|ξ|2s

�
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Problem 3. Sobolev space on the torus Td. The torus Td is the Cartesian product of d
copies of the unit circle S1. A function defined on the torus is a 2π periodic function with
respect to each independent variable. If f is integrable on Td, then the Fourier coefficients
of f are given by

F [f ](k) = f̂(k) =
1

(2π)d/2

∫
Td

f(θ)e−ik·θdθ , k ∈ Zd.

The set of Fourier coefficients plays for the same role as the Fourier transform in Rd.
The expansion of a periodic function into a Fourier series is the analogue of the Fourier
inversion formula, that is

f(θ) =
1

(2π)d/2

∑
k∈Zd

f̂(k)eik·θ, θ ∈ Td .

One can show that the map F is a isomorphic between the function spaces L2(Td) and
l2(Zd). Then, for s ∈ R, s ≥ 0 we define

Hs(Td) =

{
u ∈ L2(Td) :

∑
k∈Zd

|û(k)|2〈k〉2s <∞

}

where 〈k〉 =
√

1 + |k|2.
a.) Show that Hs(Td)′ ≈ H−s(Td) where

H−s(Td) =

{
u ∈ D′(Td) :

∑
k∈Zd

|û(k)|2〈k〉−2s <∞

}
,

Proof. Let s ≥ 0. Suppose that u ∈ Hs(Td) and let f be a continuous linear functional on
Hs(Td). Since Hs(Td) is a Hilbert space, via the Riesz representation theorem one finds
a v ∈ Hs(Td) such that

(u, f) =
∑
k∈Zd

û(k)v̂(k)〈k〉2s .

This gives f̂(k) = v̂(k)〈k〉2s and since∑
k∈Zd

|f̂(k)|2〈k〉−2s =
∑
k∈Zd

|v̂(k)|2〈k〉2s <∞

we have shown f ∈ H−s(Td). So far we have shown that Hs(Td)′ ⊂ H−s(Td). To prove
the converse inclusion let f ∈ H−s(Td). Then for all u ∈ Hs(Td) we have by the Cauchy-
Schwarz inequality

|(u, f)| =

∣∣∣∣∣∑
k∈Zd

û(k)f̂(k)

∣∣∣∣∣ ≤
(∑
k∈Zd

|û(k)|2〈k〉2k
)1/2(∑

k∈Zd

|f̂(k)|2〈k〉−2k
)1/2

≤ C‖u‖Hs(Td) ,

which proves that f defines a bounded linear function on Hs(Td). �

b.) Define the operator Λσ on D′(Td) by

(Λσu)(θ) =
∑
k∈Zd

û(k)〈k〉σeik·θ , σ ∈ R .
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Then Hs(Td) = Λ−sL2(Td) for all s ∈ R. Show that, for any s ∈ R, the natural injection
operator

j : Hs+σ(Td)→ Hs(Td)
is compact for all σ > 0. Hint: Note that the mapping Λσ : Hs+σ(Td) → Hs(Td) is
continuous and that j = Λ−σ ◦ Λσ. Hence, to prove this statement it will suffice to show
that Λ−σ : Hs(Td)→ Hs(Td) is a compact operator whenever σ > 0.

Proof. Let u ∈ Hs(Rd). Then ∑
k∈Zd

|û(k)|2〈k〉2s <∞ .

Introduce the sequence of finite rank operators

Λ−σn =
∑
|k|≤n

û(k)〈k〉−σeik·θ .

Here |k| = |k1|+ |k2|+ ...+ |kd|. We claim that

(1) lim
n→∞

‖Λ−σ − Λ−σn ‖ = 0

where the norm is the operator norm of a linear mapping on Hs(Rd). Indeed, compute

‖Λ−σ − Λ−σn ‖ = sup
‖u‖

Hs(Td)=1

‖Λ−σu− Λ−σn u‖Hs(Td) = sup
‖u‖

Hs(Td)=1

‖
∑
|k|>n

û(k)〈k〉−σeik·θ‖Hs(Td)

= sup
‖u‖

Hs(Td)=1

∑
|k|>n

|û(k)|2〈k〉2s−2σ < 〈n〉−2σ sup
‖u‖

Hs(Td)=1

∑
|k|>n

|û(k)|2〈k〉2s

= 〈n〉−2σ → 0, n→∞
Formula (1) shows that Λ−σ is the norm limit of finite rank operators. Hence, according
to a Theorem from Functional Analysis, Λ−σ is a compact operator. �


