WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #2 Key

Problem 1. Let $p(x_1, ..., x_N)$ be the $N \times N$ Vandermonde determinant

$$p(x_1, ..., x_N) = \det \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_N \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{N-1} & x_2^{N-1} & \cdots & x_N^{N-1} \end{bmatrix}.$$

a.) Show that $p(x_1, ..., x_N)$ is a polynomial of degree N - 1 in x_N with roots equal $x_1, x_2, ..., x_{N-1}$.

Solution. Expanding the determinant along the last column produces the expression
$$p(x_1, ..., x_N) = \alpha_{N-1}(x_1, ..., x_{N-1})(x_N^{N-1} + \alpha_{N-2}(x_1, ..., x_{N-1})(x_N^{N-2} + ... + \alpha_0(x_1, ..., x_{N-1}))$$
 which is indeed a polynomial in x_N of degree $N - 1$. Furthermore, if $x_N = x_j$ for any $j = 1, 2, ..., N - 1$, the determinant has two identical columns and must vanish. Hence,

$$p(x_1, ..., x_N) = \beta(x_1, ..., x_{N-1})(x_N - x_1)(x_N - x_2)...(x_N - x_{N-1}) .$$

Note that the same consideration can be made for all the other x_j for j = 1, 2, ..., N - 1. The determinant p is a polynomial in x_j with zeros $x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_N$. Thus

$$p(x_1, ..., x_N) = c \prod_{j < k} (x_j - x_k)$$

with c being a non-zero constant.

b.) Show that the $N \times N$ linear system

$$\sum_{j=1}^{N} a_j (-j)^k = 1, \qquad k = 0, 1, ..., N - 1$$

has a unique solution.

Solution. Using part a.) the determinant of the coefficient matrix of this system is equal to $p(-1, -2, ..., -N) \neq 0$

Problem 2. Let $s \in (0, 1)$. Show that an equivalent norm in $H^s(\mathbb{R}^d)$ is given by

$$||u||_{s}^{2} = \int_{\mathbb{R}^{d}} |u(x)|^{2} dx + \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{2s + d}} dx dy$$

Recall that the norm in the Sobolev space $H^{s}(\mathbb{R}^{d})$ is defined using the Fourier transform

$$\|u\|_{H^s(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} \langle \xi \rangle^{2s} |\hat{u}(\xi)|^2 d\xi$$

where $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$.

Proof. Note that after a linear change of variables we have

$$||u||_{s}^{2} = \int_{\mathbb{R}^{d}} |u(x)|^{2} dx + \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x+z) - u(x)|^{2}}{|z|^{2s+d}} \, dx dz \; .$$

Using properties of the Fourier transform

$$u(x+z) - u(x) = \mathcal{F}^{-1}[(e^{i\xi z} - 1)\hat{u}(\xi)]$$

and hence, using Parseval's identity

$$\int_{\mathbb{R}^d} |u(x+z) - u(x)|^2 = \int_{\mathbb{R}^d} |e^{i\xi z} - 1|^2 |\hat{u}(\xi)|^2 d\xi \,.$$

So far

$$\|u\|_{s}^{2} = \int_{\mathbb{R}^{d}} \|\hat{u}(\xi)\|^{2} d\xi + \int_{\mathbb{R}}^{d} \left\{ \int_{\mathbb{R}^{d}} \frac{|e^{i\xi z} - 1|^{2}}{|z|^{2s+d}} dz \right\} |\hat{u}(\xi)|^{2} d\xi .$$

In the inner integral, we may assume without loss of generality that $\xi = (|\xi|, 0, ..., 0)$. (Otherwise perform an orthogonal change of coordinates.) The inner integral is then simplified by means of the substitution $y = |\xi|z$

$$\int_{\mathbb{R}^d} \frac{|e^{i|\xi|z_1} - 1|^2}{|z|^{2s+d}} dz = |\xi|^{2s} \int_{\mathbb{R}^d} \frac{|e^{iy_1} - 1|^2}{|y|^{2s+d}} dy$$

Since $|e^{iy_1} - 1|^2 \le C|y_1|^2$ by means of the Taylor series for the exponential for $|y| \le 1$ small we have

$$\frac{|e^{iy_1}-1|^2}{|y|^{2s+d}} \le C \frac{|y_1|^2}{|y|^{2s+d}} \le C \frac{|y|^2}{|y|^{2s+d}} = C \frac{1}{|y|^{2s+d-2}}$$

for $|y| \leq 1$ which shows that the expression is integrable over the unit ball since s < 1 (use polar coordinates). So far we have

$$\int_{|y| \le 1} \frac{|e^{iy_1} - 1|^2}{|y|^{2s+d}} \, dy = C_1(s)$$

and the integral

$$\int_{|y|\ge 1} \frac{|e^{iy_1}-1|^2}{|y|^{2s+d}} \, dy$$

is convergent because of s > 0 (use again polar coordinates). Hence, we have proved that

$$\int_{\mathbb{R}^d} \frac{|e^{iy_1} - 1|^2}{|y|^{2s+d}} \, dy = C(s)$$

and thus

$$||u||_{s}^{2} = \int_{\mathbb{R}^{d}} |\hat{u}(\xi)|^{2} d\xi + C(s) \int_{\mathbb{R}^{d}} |\xi|^{2s} |\hat{u}(\xi)|^{2} d\xi$$

This norm is equivalent to $||u||_{H^s(\mathbb{R}^d)}$ for 0 < s < 1 because of the inequality

$$c_1 |\xi|^{2s} \le [\sqrt{1+|\xi|^2}]^{2s} \le c_2 |\xi|^{2s}$$

Problem 3. Sobolev space on the torus \mathbb{T}^d . The torus \mathbb{T}^d is the Cartesian product of d copies of the unit circle S^1 . A function defined on the torus is a 2π periodic function with respect to each independent variable. If f is integrable on \mathbb{T}^d , then the Fourier coefficients of f are given by

$$\mathcal{F}[f](k) = \hat{f}(k) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{T}^d} f(\theta) e^{-ik \cdot \theta} d\theta , \qquad k \in \mathbb{Z}^d.$$

The set of Fourier coefficients plays for the same role as the Fourier transform in \mathbb{R}^d . The expansion of a periodic function into a Fourier series is the analogue of the Fourier inversion formula, that is

$$f(\theta) = \frac{1}{(2\pi)^{d/2}} \sum_{k \in \mathbb{Z}^d} \hat{f}(k) e^{ik \cdot \theta}, \qquad \theta \in \mathbb{T}^d.$$

One can show that the map \mathcal{F} is a isomorphic between the function spaces $L_2(\mathbb{T}^d)$ and $l_2(\mathbb{Z}^d)$. Then, for $s \in \mathbb{R}$, $s \ge 0$ we define

$$H^{s}(\mathbb{T}^{d}) = \left\{ u \in L_{2}(\mathbb{T}^{d}) : \sum_{k \in \mathbb{Z}^{d}} |\hat{u}(k)|^{2} \langle k \rangle^{2s} < \infty \right\}$$

where $\langle k \rangle = \sqrt{1 + |k|^2}$.

a.) Show that $H^s(\mathbb{T}^d)' \approx H^{-s}(\mathbb{T}^d)$ where

$$H^{-s}(\mathbb{T}^d) = \left\{ u \in \mathcal{D}'(\mathbb{T}^d) : \sum_{k \in \mathbb{Z}^d} |\hat{u}(k)|^2 \langle k \rangle^{-2s} < \infty \right\} ,$$

Proof. Let $s \geq 0$. Suppose that $u \in H^s(\mathbb{T}^d)$ and let f be a continuous linear functional on $H^{s}(\mathbb{T}^{d})$. Since $H^{s}(\mathbb{T}^{d})$ is a Hilbert space, via the Riesz representation theorem one finds a $v \in H^s(\mathbb{T}^d)$ such that

$$(u, f) = \sum_{k \in \mathbb{Z}^d} \hat{u}(k) \overline{\hat{v}(k)} \langle k \rangle^{2s} .$$

This gives $\hat{f}(k) = \hat{v}(k) \langle k \rangle^{2s}$ and since

$$\sum_{k \in \mathbb{Z}^d} |\hat{f}(k)|^2 \langle k \rangle^{-2s} = \sum_{k \in \mathbb{Z}^d} |\hat{v}(k)|^2 \langle k \rangle^{2s} < \infty$$

we have shown $f \in H^{-s}(\mathbb{T}^d)$. So far we have shown that $H^s(\mathbb{T}^d)' \subset H^{-s}(\mathbb{T}^d)$. To prove the converse inclusion let $f \in H^{-s}(\mathbb{T}^d)$. Then for all $u \in H^s(\mathbb{T}^d)$ we have by the Cauchy-Schwarz inequality

$$|(u,f)| = \left| \sum_{k \in \mathbb{Z}^d} \hat{u}(k) \overline{\hat{f}(k)} \right| \le \left(\sum_{k \in \mathbb{Z}^d} |\hat{u}(k)|^2 \langle k \rangle^{2k} \right)^{1/2} \left(\sum_{k \in \mathbb{Z}^d} |\hat{f}(k)|^2 \langle k \rangle^{-2k} \right)^{1/2} \le C \|u\|_{H^s(\mathbb{T}^d)},$$

which proves that f defines a bounded linear function on $H^s(\mathbb{T}^d)$.

which proves that f defines a bounded linear function on $H^{s}(\mathbb{T}^{d})$.

b.) Define the operator Λ^{σ} on $\mathcal{D}'(\mathbb{T}^d)$ by

$$(\Lambda^{\sigma} u)(\theta) = \sum_{k \in \mathbb{Z}^d} \hat{u}(k) \langle k \rangle^{\sigma} e^{ik \cdot \theta} , \qquad \sigma \in \mathbb{R} .$$

Then $H^s(\mathbb{T}^d) = \Lambda^{-s} L_2(\mathbb{T}^d)$ for all $s \in \mathbb{R}$. Show that, for any $s \in \mathbb{R}$, the natural injection operator

$$j: H^{s+\sigma}(\mathbb{T}^d) \to H^s(\mathbb{T}^d)$$

is compact for all $\sigma > 0$. Hint: Note that the mapping $\Lambda^{\sigma} : H^{s+\sigma}(\mathbb{T}^d) \to H^s(\mathbb{T}^d)$ is continuous and that $j = \Lambda^{-\sigma} \circ \Lambda^{\sigma}$. Hence, to prove this statement it will suffice to show that $\Lambda^{-\sigma} : H^s(\mathbb{T}^d) \to H^s(\mathbb{T}^d)$ is a compact operator whenever $\sigma > 0$.

Proof. Let $u \in H^s(\mathbb{R}^d)$. Then

$$\sum_{k \in \mathbb{Z}^d} |\hat{u}(k)|^2 \langle k \rangle^{2s} < \infty \; .$$

Introduce the sequence of finite rank operators

$$\Lambda_n^{-\sigma} = \sum_{|k| \le n} \hat{u}(k) \langle k \rangle^{-\sigma} e^{ik \cdot \theta} \; .$$

Here $|k| = |k_1| + |k_2| + ... + |k_d|$. We claim that

(1)
$$\lim_{n \to \infty} \|\Lambda^{-\sigma} - \Lambda^{-\sigma}_n\| = 0$$

where the norm is the operator norm of a linear mapping on $H^{s}(\mathbb{R}^{d})$. Indeed, compute

$$\begin{split} \|\Lambda^{-\sigma} - \Lambda_{n}^{-\sigma}\| &= \sup_{\|u\|_{H^{s}(\mathbb{T}^{d})}=1} \|\Lambda^{-\sigma}u - \Lambda_{n}^{-\sigma}u\|_{H^{s}(\mathbb{T}^{d})} = \sup_{\|u\|_{H^{s}(\mathbb{T}^{d})}=1} \|\sum_{|k|>n} \hat{u}(k)\langle k\rangle^{-\sigma} e^{ik\cdot\theta}\|_{H^{s}(\mathbb{T}^{d})} \\ &= \sup_{\|u\|_{H^{s}(\mathbb{T}^{d})}=1} \sum_{|k|>n} |\hat{u}(k)|^{2} \langle k\rangle^{2s-2\sigma} < \langle n\rangle^{-2\sigma} \sup_{\|u\|_{H^{s}(\mathbb{T}^{d})}=1} \sum_{|k|>n} |\hat{u}(k)|^{2} \langle k\rangle^{2s} \\ &= \langle n\rangle^{-2\sigma} \to 0, \qquad n \to \infty \end{split}$$

Formula (1) shows that $\Lambda^{-\sigma}$ is the norm limit of finite rank operators. Hence, according to a Theorem from Functional Analysis, $\Lambda^{-\sigma}$ is a compact operator.